The Lasso under Poisson-like Heteroscedasticity
نویسندگان
چکیده
The performance of the Lasso is well understood under the assumptions of the standard sparse linear model with homoscedastic noise. However, in several applications, the standard model does not describe the important features of the data. This paper examines how the Lasso performs on a non-standard model that is motivated by medical imaging applications. In these applications, the variance of the noise scales linearly with the expectation of the observation. Like all heteroscedastic models, the noise terms in this Poisson-like model are not independent of the design matrix. Under a sparse Poisson-like model for the high-dimension regime that allows the number of predictors (p) sample size (n), we give necessary and sufficient conditions for the sign consistency of the Lasso estimate. Simulations reveal that the Lasso performs equally well in terms of model selection performance on both Poisson-like data and homoscedastic data (with properly scaled noise variance), across a range of parameterizations.
منابع مشابه
The Lasso under Heteroscedasticity
Lasso is a popular method for variable selection in regression. Much theoretical understanding has been obtained recently on its model selection or sparsity recovery properties under sparse and homoscedastic linear regression models. Since these standard model assumptions are often not met in practice, it is important to understand how Lasso behaves under nonstandard model assumptions. In this ...
متن کاملAdaptive Lasso and group-Lasso for functional Poisson regression
High dimensional Poisson regression has become a standard framework for the analysis of massive counts datasets. In this work we estimate the intensity function of the Poisson regression model by using a dictionary approach, which generalizes the classical basis approach, combined with a Lasso or a group-Lasso procedure. Selection depends on penalty weights that need to be calibrated. Standard ...
متن کاملPivotal estimation via square-root Lasso in nonparametric regression
We propose a self-tuning √ Lasso method that simultaneously resolves three important practical problems in high-dimensional regression analysis, namely it handles the unknown scale, heteroscedasticity and (drastic) non-Gaussianity of the noise. In addition, our analysis allows for badly behaved designs, for example, perfectly collinear regressors, and generates sharp bounds even in extreme case...
متن کاملForecasting Wind Power – Modeling Periodic and Non-linear Effects Under Conditional Heteroscedasticity
In this article we present an approach that enables joint wind speed and wind power forecasts for a wind park. We combine a multivariate seasonal time varying threshold autoregressive moving average (TVARMA) model with a power threshold generalized autoregressive conditional heteroscedastic (power-TGARCH) model. The modeling framework incorporates diurnal and annual periodicity modeling by peri...
متن کاملA data-dependent weighted LASSO under Poisson noise
Sparse linear inverse problems appear in a variety of settings, but often the noise contaminating observations cannot accurately be described as bounded by or arising from a Gaussian distribution. Poisson observations in particular are a characteristic feature of several real-world applications. Previous work on sparse Poisson inverse problems encountered several limiting technical hurdles. Thi...
متن کامل